OPTIMASI PERENCANAAN PRODUKSI PADA PROSES WIRE DRAWING MENGGUNAKAN MIXED INTEGER LINEAR PROGRAMMING
نویسندگان
چکیده
منابع مشابه
Klasifikasi Data Cardiotocography Dengan Integrasi Metode Neural Network Dan Particle Swarm Optimization
Backpropagation (BP) adalah sebuah metode yang digunakan dalam training Neural Network (NN) untuk menentukan parameter bobot yang sesuai. Proses penentuan parameter bobot dengan menggunakan metode backpropagation sangat dipengaruhi oleh pemilihan nilai learning rate (LR)-nya. Penggunaan nilai learning rate yang kurang optimal berdampak pada waktu komputasi yang lama atau akurasi klasifikasi yan...
متن کاملEfficient automated schematic map drawing using multiobjective mixed integer programming
We present an efficient multiobjective mixed binary linear program that automates schematic mapping for network visualization and navigation. Schematic mapping has broad applications in representing transit networks, circuits, disease pathways, project tasks, organograms, and taxonomies. Good schematic maps employ distortion while preserving topology to facilitate access to physical or virtual ...
متن کاملNoncommercial Software for Mixed-Integer Linear Programming
We present an overview of noncommercial software tools for the solution of mixed-integer linear programs (MILPs). We first review solution methodologies for MILPs and then present an overview of the available software, including detailed descriptions of eight software packages available under open-source or other noncommercial licenses. Each package is categorized as a black-box solver, a calla...
متن کاملPolyhedral Approaches to Mixed Integer Linear Programming
This survey presents tools from polyhedral theory that are used in integer programming. It applies them to the study of valid inequalities for mixed integer linear sets, such as Gomory’s mixed integer cuts.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: MATRIK
سال: 2019
ISSN: 2621-8933,1693-5128
DOI: 10.30587/matrik.v19i2.693